Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Curr Opin Chem Biol ; 79: 102422, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278029

Subject(s)
Selenium , Sulfur , Biology
2.
Nat Chem Biol ; 19(11): 1309-1319, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37248412

ABSTRACT

With an eye toward expanding chemistries used for covalent ligand discovery, we elaborated an umpolung strategy that exploits the 'polarity reversal' of sulfur when cysteine is oxidized to sulfenic acid, a widespread post-translational modification, for selective bioconjugation with C-nucleophiles. Here we present a global map of a human sulfenome that is susceptible to covalent modification by members of a nucleophilic fragment library. More than 500 liganded sulfenic acids were identified on proteins across diverse functional classes, and, of these, more than 80% were not targeted by electrophilic fragment analogs. We further show that members of our nucleophilic fragment library can impair functional protein-protein interactions involved in nuclear oncoprotein transport and DNA damage repair. Our findings reveal a vast expanse of ligandable sulfenic acids in the human proteome and highlight the utility of nucleophilic small molecules in the fragment-based covalent ligand discovery pipeline, presaging further opportunities using non-traditional chemistries for targeting proteins.


Subject(s)
Cysteine , Sulfenic Acids , Humans , Cysteine/metabolism , Ligands , Proteome/metabolism , Protein Processing, Post-Translational
3.
J Thromb Haemost ; 21(8): 2137-2150, 2023 08.
Article in English | MEDLINE | ID: mdl-37037379

ABSTRACT

BACKGROUND: Oxidative stress contributes to thrombosis in atherosclerosis, inflammation, infection, aging, and malignancy. Oxidant-induced cysteine modifications, including sulfenylation, can act as a redox-sensitive switch that controls protein function. Protein disulfide isomerase (PDI) is a prothrombotic enzyme with exquisitely redox-sensitive active-site cysteines. OBJECTIVES: We hypothesized that PDI is sulfenylated during oxidative stress, contributing to the prothrombotic potential of PDI. METHODS: Biochemical and enzymatic assays using purified proteins, platelet and endothelial cell assays, and in vivo murine thrombosis studies were used to evaluate the role of oxidative stress in PDI sulfenylation and prothrombotic activity. RESULTS: PDI exposure to oxidants resulted in the loss of PDI reductase activity and simultaneously promoted sulfenylated PDI generation. Following exposure to oxidants, sulfenylated PDI spontaneously converted to disulfided PDI. PDI oxidized in this manner was able to transfer disulfides to protein substrates. Inhibition of sulfenylation impaired disulfide formation by oxidants, indicating that sulfenylation is an intermediate during PDI oxidation. Agonist-induced activation of platelets and endothelium resulted in the release of sulfenylated PDI. PDI was also sulfenylated by oxidized low-density lipoprotein (oxLDL). In an in vivo model of thrombus formation, oxLDL markedly promoted platelet accumulation following an arteriolar injury. PDI oxidoreductase inhibition blocked oxLDL-mediated augmentation of thrombosis. CONCLUSION: PDI sulfenylation is a critical posttranslational modification that is an intermediate during disulfide PDI formation in the setting of oxidative stress. Oxidants generated by vascular cells during activation promote PDI sulfenylation, and interference with PDI during oxidative stress impairs thrombus formation.


Subject(s)
Protein Disulfide-Isomerases , Thrombosis , Animals , Mice , Cysteine/metabolism , Disulfides , Oxidants , Oxidative Stress , Oxidoreductases/metabolism , Protein Disulfide-Isomerases/metabolism , Thrombosis/metabolism
4.
Mol Cell ; 83(9): 1527-1537.e5, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37086725

ABSTRACT

Because of the central role ribosomes play for protein translation and ribosome-mediated mRNA and protein quality control (RQC), the ribosome pool is surveyed and dysfunctional ribosomes degraded both during assembly, as well as the functional cycle. Oxidative stress downregulates translation and damages mRNAs and ribosomal proteins (RPs). Although damaged mRNAs are detected and degraded via RQC, how cells mitigate damage to RPs is not known. Here, we show that cysteines in Rps26 and Rpl10 are readily oxidized, rendering the proteins non-functional. Oxidized Rps26 and Rpl10 are released from ribosomes by their chaperones, Tsr2 and Sqt1, and the damaged ribosomes are subsequently repaired with newly made proteins. Ablation of this pathway impairs growth, which is exacerbated under oxidative stress. These findings reveal an unanticipated mechanism for chaperone-mediated ribosome repair, augment our understanding of ribosome quality control, and explain previous observations of protein exchange in ribosomes from dendrites, with broad implications for aging and health.


Subject(s)
Ribosomal Proteins , Ribosomes , Ribosomes/genetics , Ribosomes/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Oxidative Stress , Protein Biosynthesis
6.
Nat Commun ; 13(1): 5522, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130931

ABSTRACT

'Turn-on' fluorescence probes for detecting H2O2 in cells are established, but equivalent tools to monitor the products of its reaction with protein cysteines have not been reported. Here we describe fluorogenic probes for detecting sulfenic acid, a redox modification inextricably linked to H2O2 signaling and oxidative stress. The reagents exhibit excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. We develop a high-throughput assay for measuring S-sulfenation in cells and use it to screen a curated kinase inhibitor library. We reveal a positive association between S-sulfenation and inhibition of TK, AGC, and CMGC kinase group members including GSK3, a promising target for neurological disorders. Proteomic mapping of GSK3 inhibitor-treated cells shows that S-sulfenation sites localize to the regulatory cysteines of antioxidant enzymes. Our studies highlight the ability of kinase inhibitors to modulate the cysteine sulfenome and should find broad application in the rapidly growing field of redox medicine.


Subject(s)
Cysteine , Sulfenic Acids , Antioxidants/metabolism , Cysteine/metabolism , Glycogen Synthase Kinase 3/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Proteomics
7.
Redox Biol ; 53: 102332, 2022 07.
Article in English | MEDLINE | ID: mdl-35598378

ABSTRACT

Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), it turns into a potent chaperone-like holdase that can effectively protect E. coli's proteome during oxidative stress. However, it is unknown, which residues need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue. To overcome the instability of the N-chloramine modification, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and/or R128 led to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Molecular Chaperones , Animals , Arginine , Chromatography, Liquid , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Halogenation , Hydrophobic and Hydrophilic Interactions , Hypochlorous Acid/chemistry , Imines/metabolism , Lysine , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Proteomics , Tandem Mass Spectrometry
8.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35074895

ABSTRACT

The development of small-molecules targeting different components of SARS-CoV-2 is a key strategy to complement antibody-based treatments and vaccination campaigns in managing the COVID-19 pandemic. Here, we show that two thiol-based chemical probes that act as reducing agents, P2119 and P2165, inhibit infection by human coronaviruses, including SARS-CoV-2, and decrease the binding of spike glycoprotein to its receptor, the angiotensin-converting enzyme 2 (ACE2). Proteomics and reactive cysteine profiling link the antiviral activity to the reduction of key disulfides, specifically by disruption of the Cys379-Cys432 and Cys391-Cys525 pairs distal to the receptor binding motif in the receptor binding domain (RBD) of the spike glycoprotein. Computational analyses provide insight into conformation changes that occur when these disulfides break or form, consistent with an allosteric role, and indicate that P2119/P2165 target a conserved hydrophobic binding pocket in the RBD with the benzyl thiol-reducing moiety pointed directly toward Cys432. These collective findings establish the vulnerability of human coronaviruses to thiol-based chemical probes and lay the groundwork for developing compounds of this class, as a strategy to inhibit the SARS-CoV-2 infection by shifting the spike glycoprotein redox scaffold.


Subject(s)
Amino Alcohols/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/pharmacology , Phenyl Ethers/pharmacology , Receptors, Virus/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Sulfhydryl Compounds/pharmacology , Allosteric Regulation , Amino Alcohols/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites , COVID-19/virology , Cell Line , Disulfides/antagonists & inhibitors , Disulfides/chemistry , Disulfides/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Oxidation-Reduction , Phenyl Ethers/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Sulfhydryl Compounds/chemistry , COVID-19 Drug Treatment
9.
Nat Chem ; 13(11): 1140-1150, 2021 11.
Article in English | MEDLINE | ID: mdl-34531572

ABSTRACT

Triphenylphosphonium ylides, known as Wittig reagents, are one of the most commonly used tools in synthetic chemistry. Despite their considerable versatility, Wittig reagents have not yet been explored for their utility in biological applications. Here we introduce a chemoselective ligation reaction that harnesses the reactivity of Wittig reagents and the unique chemical properties of sulfenic acid, a pivotal post-translational cysteine modification in redox biology. The reaction, which generates a covalent bond between the ylide nucleophilic α-carbon and electrophilic γ-sulfur, is highly selective, rapid and affords robust labelling under a range of biocompatible reaction conditions, which includes in living cells. We highlight the broad utility of this conjugation method to enable site-specific proteome-wide stoichiometry analysis of S-sulfenylation and to visualize redox-dependent changes in mitochondrial cysteine oxidation and redox-triggered triphenylphosphonium generation for the controlled delivery of small molecules to mitochondria.


Subject(s)
Indicators and Reagents/chemistry , Mitochondria/chemistry , Sulfenic Acids/chemistry , Oxidation-Reduction , Protein Processing, Post-Translational , Proteomics/methods
10.
Redox Biol ; 46: 102072, 2021 10.
Article in English | MEDLINE | ID: mdl-34298464

ABSTRACT

Cysteine sulfenic acids (Cys-SOH) are pivotal modifications in thiol-based redox signaling and central intermediates en route to disulfide and sulfinic acid states. A core mission in our lab is to develop bioorthogonal chemical tools with the potential to answer mechanistic questions involving cysteine oxidation. Our group, among others, has contributed to the development of nucleophilic chemical probes for detecting sulfenic acids in living cells. Recently, another class of Cys-SOH probes based on strained alkene and alkyne electrophiles has emerged. However, the use of different models of sulfenic acid and methodologies, has confounded clear comparison of these probes with respect to chemical reactivity, kinetics, and selectivity. Here, we perform a parallel evaluation of nucleophilic and electrophilic chemical probes for Cys-SOH. Among the key findings, we demonstrate that a probe for Cys-SOH based on the norbornene scaffold does not react with any of the validated sulfenic acid models in this study. Furthermore, we show that purported cross-reactivity of dimedone-like probes with electrophiles, like aldehydes and cyclic sulfenamides, is a not meaningful in a biological setting. In summary, nucleophilic probes remain the most viable tools for bioorthogonal detection of Cys-SOH.


Subject(s)
Cysteine , Sulfenic Acids , Cysteine/metabolism , Disulfides , Oxidation-Reduction , Signal Transduction , Sulfhydryl Compounds
11.
ACS Omega ; 6(21): 13756-13765, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34095667

ABSTRACT

Tuberculosis (TB) is the deadliest infectious disease in the world. In Mycobacterium tuberculosis, the first committed step in sulfate assimilation is the reductive cleavage of adenosine-5'-phosphosulfate (APS) to form adenosine-5'-phosphate (AMP) and sulfite by the enzyme APS reductase (APSR). The vital role of APSR in the production of essential reduced-sulfur-containing metabolites and the absence of a homologue enzyme in humans makes APSR a potential target for therapeutic interventions. Here, we present the crystal structure of the [4Fe-4S] cluster-containing APSR from M. tuberculosis (MtbAPSR) and compare it to previously determined structures of sulfonucleotide reductases. We further present MtbAPSR structures with substrate APS and product AMP bound in the active site. Our structures at a 3.1 Å resolution show high structural similarity to other sulfonucleotide reductases and reveal that APS and AMP have similar binding modes. These studies provide structural data for structure-based drug design aimed to combat TB.

12.
Nat Commun ; 12(1): 1415, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658510

ABSTRACT

Post-translational changes in the redox state of cysteine residues can rapidly and reversibly alter protein functions, thereby modulating biological processes. The nematode C. elegans is an ideal model organism for studying cysteine-mediated redox signaling at a network level. Here we present a comprehensive, quantitative, and site-specific profile of the intrinsic reactivity of the cysteinome in wild-type C. elegans. We also describe a global characterization of the C. elegans redoxome in which we measured changes in three major cysteine redox forms after H2O2 treatment. Our data revealed redox-sensitive events in translation, growth signaling, and stress response pathways, and identified redox-regulated cysteines that are important for signaling through the p38 MAP kinase (MAPK) pathway. Our in-depth proteomic dataset provides a molecular basis for understanding redox signaling in vivo, and will serve as a valuable and rich resource for the field of redox biology.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cysteine/metabolism , Animals , Antioxidants/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/microbiology , Caenorhabditis elegans Proteins/genetics , Hydrogen Peroxide/pharmacology , MAP Kinase Kinase 4/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Mutation , Oxidation-Reduction , Proteomics/methods , Signal Transduction , Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Redox Biol ; 41: 101898, 2021 05.
Article in English | MEDLINE | ID: mdl-33647858

ABSTRACT

Sulfur dioxide (SO2) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO2 influences its upper-stream targets have been elusive. Here we show that SO2 may mediate conversion of hydrogen peroxide (H2O2) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H2O2 to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO2. Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO2, among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor ß signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO2 on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO2 in vascular pathophysiology through a redox-dependent mechanism.


Subject(s)
Hydrogen Peroxide , Vascular Remodeling , Humans , Oxidation-Reduction , Signal Transduction , Smad3 Protein , Sulfenic Acids
16.
Blood Adv ; 4(18): 4494-4507, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32946569

ABSTRACT

Arterial thrombosis in the setting of dyslipidemia promotes clinically significant events, including myocardial infarction and stroke. Oxidized lipids in low-density lipoproteins (oxLDL) are a risk factor for athero-thrombosis and are recognized by platelet scavenger receptor CD36. oxLDL binding to CD36 promotes platelet activation and thrombosis by promoting generation of reactive oxygen species. The downstream signaling events initiated by reactive oxygen species in this setting are poorly understood. In this study, we report that CD36 signaling promotes hydrogen peroxide flux in platelets. Using carbon nucleophiles that selectively and covalently modify cysteine sulfenic acids, we found that hydrogen peroxide generated through CD36 signaling promotes cysteine sulfenylation of platelet proteins. Specifically, cysteines were sulfenylated on Src family kinases, which are signaling transducers that are recruited to CD36 upon recognition of its ligands. Cysteine sulfenylation promoted activation of Src family kinases and was prevented by using a blocking antibody to CD36 or by enzymatic degradation of hydrogen peroxide. CD36-mediated platelet aggregation and procoagulant phosphatidylserine externalization were inhibited in a concentration-dependent manner by a panel of sulfenic acid-selective carbon nucleophiles. At the same concentrations, these probes did not inhibit platelet aggregation induced by the purinergic receptor agonist adenosine diphosphate or the collagen receptor glycoprotein VI agonist collagen-related peptide. Selective modification of cysteine sulfenylation in vivo with a benzothiazine-based nucleophile rescued the enhanced arterial thrombosis seen in dyslipidemic mice back to control levels. These findings suggest that CD36 signaling generates hydrogen peroxide to oxidize cysteines within platelet proteins, including Src family kinases, and lowers the threshold for platelet activation in dyslipidemia.


Subject(s)
Dyslipidemias , Thrombosis , Animals , CD36 Antigens , Cysteine , Mice , Platelet Activation
18.
Acc Chem Res ; 53(1): 20-31, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31869209

ABSTRACT

Oxidative post-translational modifications (OxiPTMs) of cysteine residues are the molecular foundation of thiol-based redox regulation that modulates physiological events such as cell proliferation, differentiation, and migration and, when dysregulated, can lead to biomolecule damage and cell death. Common OxiPTMs of cysteine thiols (-SH) include reversible modifications such as S-sulfenylation (-SOH), S-glutathionylation (-SSG), disulfide formation (-SSR), S-nitrosylation (-SNO), and S-sulfhydration (-SSH) as well as more biologically stable modifications like S-sulfinylation (-SO2H) and S-sulfonylation (-SO3H). In the past decade, our laboratory has developed first-in-class chemistry-based tools and proteomic methods to advance the field of thiol-based redox biology and oxidative stress. In this Account, we take the reader through the historical aspects of probe development and application in our laboratory, highlighting key advances in our understanding of sulfur chemistry, in the test tube and in living systems. Offering superior resolution, throughput, accuracy, and reproducibility, mass spectrometry (MS)-based proteomics coupled to chemoselective "activity-based" small-molecule probes is the most rigorous technique for global mapping of cysteine OxiPTMs. Herein, we describe the evolution of this field from indirect detection to state-of-the-art site-centric quantitative chemoproteomic approaches that enable mapping of physiological and pathological changes in cysteine oxidation. These methods enable protein and site-level identification, mechanistic studies, mapping fold-changes, and modification stoichiometry. In particular, this Account focuses on activity-based methods for profiling S-sulfenylation, S-sulfinylation, and S-sulfhydration with an eye toward new reactions and methodologies developed in our group as well as their applications that have shed new light on fundamental processes of redox biology. Among several classes of sulfenic acid probes, dimedone-based C-nucleophiles possess superior chemical selectivity and compatibility with tandem MS. Cell-permeable dimedone derivatives with a bioconjugation handle are capable of detecting of S-sulfenylation in living cells. In-depth screening of a C-nucleophile library has yielded several entities with significantly enhanced reactivity over dimedone while maintaining selectivity, and reversible linear C-nucleophiles that enable controlled target release. C-Nucleophiles have also been implemented in tag-switch methods to detect S-sulfhydration. Most recently, activity-based detection of protein S-sulfinylation with electrophilic nitrogen species (ENS), such as C-nitroso compounds and electron deficient diazines, offers significant advantages in simplicity-of-use and target specificity compared to label-free methods. When feasible, the rich information provided by site-centric quantitative proteomics should not be tainted by oxidation artifacts from cell lysis. Therefore, chemoselective probes that function in a native environment with low cytotoxicity, good cell-permeability, and competitive kinetics are desired in modern redox chemoproteomics approaches. As our understanding of sulfur chemistry and redox signaling evolves, newly discovered cysteine OxiPTMs in microorganisms, plants, cells, tissues, and disease models should innovatively promote mechanistic and therapeutic research.


Subject(s)
Cysteine/metabolism , Proteomics , Cysteine/chemistry , Humans , Oxidation-Reduction , Protein Processing, Post-Translational
19.
Cell Metab ; 30(6): 1152-1170.e13, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31735592

ABSTRACT

Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli.


Subject(s)
Aging/metabolism , Hydrogen Sulfide/metabolism , Protein Processing, Post-Translational/physiology , Sulfides/metabolism , Animals , Caenorhabditis elegans , Cell Line , Cyclohexanones/chemistry , Cysteine/chemistry , Cysteine/metabolism , Drosophila melanogaster , Escherichia coli , Fibroblasts , Humans , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/physiology , Rats , Rats, Wistar , Saccharomyces cerevisiae , Staining and Labeling
20.
Nat Cell Biol ; 21(12): 1553-1564, 2019 12.
Article in English | MEDLINE | ID: mdl-31768048

ABSTRACT

Redox balance, an essential feature of healthy physiological steady states, is regulated by circadian clocks, but whether or how endogenous redox signalling conversely regulates clockworks in mammals remains unknown. Here, we report circadian rhythms in the levels of endogenous H2O2 in mammalian cells and mouse livers. Using an unbiased method to screen for H2O2-sensitive transcription factors, we discovered that rhythmic redox control of CLOCK directly by endogenous H2O2 oscillations is required for proper intracellular clock function. Importantly, perturbations in the rhythm of H2O2 levels induced by the loss of p66Shc, which oscillates rhythmically in the liver and suprachiasmatic nucleus (SCN) of mice, disturb the rhythmic redox control of CLOCK function, reprogram hepatic transcriptome oscillations, lengthen the circadian period in mice and modulate light-induced clock resetting. Our findings suggest that redox signalling rhythms are intrinsically coupled to the circadian system through reversible oxidative modification of CLOCK and constitute essential mechanistic timekeeping components in mammals.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Hydrogen Peroxide/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Female , Liver/metabolism , Liver/physiology , Male , Mammals/metabolism , Mammals/physiology , Mice , Mice, Knockout , Oxidation-Reduction , Period Circadian Proteins/metabolism , Signal Transduction/physiology , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...